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Abstract: The promulgation of the American College of Rheumatology (ACR) 1990 criteria for
fibromyalgia (FM) classification has significantly contributed to an era of increased research into
mechanisms that underlie the disorder. The previous emphasis on putative peripheral nociceptive
mechanisms has advanced to identifying of changes in central neural networks that modulate pain
and other sensory processes. The influences of psychosocial factors on the dynamic and complex
neurobiological mechanisms involved in the fibromyalgia clinical phenotype are now better defined.
This review highlights key milestones that have directed knowledge concerning the fundamental
mechanisms contributing to fibromyalgia.
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The clinical features that characterise the phenotype designated by fibromyalgia (FM) have long been
described in both general and medical literature. However, the promulgation of the American College
of Rheumatology (ACR) 1990 classification criteria for fibromyalgia [1] triggered a marked increase in
focused research into clinical, social, and mechanistic aspects of the disorder. The criteria acted as a
watershed for better understanding and management of this highly impactful and common disorder.
We reviewed selected observations on mechanisms deemed to be important in fibromyalgia, with an
emphasis on neurophysiological processes, but with recognition of significant input from social and
psychological factors (Table 1).

Table 1. Key mechanisms underlying fibromyalgia advanced by ACR 1990 criteria.

Neural Mechanisms Type of Mechanism
Peripheral Mechanoreceptor input

Referred pain
Nociception

Sympathetic nervous system
Neuroinflammation

Spinal cord Central sensitization
Descending spinal cord control

Brain Neurotransmitter changes
Connectivity changes
Neuroinflammation

Other mechanisms Genetic
Psychological

Stress reactivity
Social factors

Biomedicines 2020, 8, 223; doi:10.3390/biomedicines8070223 www.mdpi.com/journal/biomedicines

http://www.mdpi.com/journal/biomedicines
http://www.mdpi.com
https://orcid.org/0000-0002-7896-055X
https://orcid.org/0000-0001-6712-1331
http://www.mdpi.com/2227-9059/8/7/223?type=check_update&version=1
http://dx.doi.org/10.3390/biomedicines8070223
http://www.mdpi.com/journal/biomedicines


Biomedicines 2020, 8, 223 2 of 12

1. Describing Fibromyalgia

Fibromyalgia is characterised by a distinctive collection of contributing features that typically
include widespread pain and tenderness, muscle tightness, peripheral dysesthesia, soft tissue swelling,
emotional distress, poor quality sleep, fatigue, and cognitive dysfunction [2]. These features are
described in ancient writings and appear in medical descriptions from the 19th century [3,4], reflecting
the ubiquitous presence of this condition.

Fibromyalgia, under many different names, was more clearly defined over 100 years ago, but it
was not until the 1970s that Smythe and Moldofsky described the crucial clinical characteristics of the
disorder [5]. They focused on the clinical features of widespread pain and tenderness; they noted that
particular sites in the body (known as “tender points”) were predictably more sensitive to palpation in
those with fibromyalgia than in healthy controls. They also recognised several central characteristics
(in contrast to peripheral) such as fatigue, poor sleep, and emotional distress. Others extended these
observations and identified significant associations with conditions such as irritable bowel syndrome,
irritable bladder syndrome, and migraine, among other disorders [6,7].

2. Evolution of Classification and Diagnostic Criteria

Classification criteria emerged in the 1970s, focusing on a mix of defining clinical features
that included widespread pain, tenderness, and other symptoms [5,6]. The 1990 ACR classification
criteria were a more robust refinement of previous criteria and better defined a fibromyalgia patient
for purposes of research [1]. Later criteria focused on patients self-reporting their key symptoms;
furthermore, the criteria recognised that the symptoms of fibromyalgia exist on a spectrum, allowing for
a better understanding of the fluctuations in these symptoms, along with responses to therapies [8–11].
Other criteria were explored with different characteristics [12,13]. In the 2020s, newer criteria explore
combinations of the self-reporting of key fibromyalgia-related clinical features, such as fatigue,
insomnia, and bedside clinical measures of central sensitization, such as slowly repeated evoked
pain responses [14]. These post-1990 ACR criteria have further enhanced the understanding of
fibromyalgia’s key elements by both healthcare workers and patients.

The 1990 ACR criteria are seen as a lift-off point for ongoing validated classification and diagnostic
criteria, which can be used in different circumstances ranging from epidemiological to neurobiological
explorations, in patients deemed to have fibromyalgia. Importantly, the criteria promulgated the
change in name from the previous term, fibrositis, to fibromyalgia, one that had been suggested
by others earlier [15]. This name change reflected a transformation in thinking of the underlying
mechanisms contributing to fibromyalgia (Figure 1).
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Figure 1. The 1990 ACR criteria accelerated and broadened the curve of knowledge of mechanisms
contributing to fibromyalgia in many overlapping domains.
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3. Exploration of Peripheral Muscle Mechanisms was Prominent Prior to the 1990 ACR Criteria

Key clinical features of fibromyalgia, such as pain, tenderness, and stiffness, are predominantly
present in muscle and joint regions. Due to this, peripheral nociceptive causes for the condition have
long been sought. Early concepts of mechanisms contributing to these features included muscle
inflammation, fascia inflammation, or both [16,17]. Histomorphometry assessments of tissues taken
from regions of pain in patients deemed to have fibromyalgia were initially thought to show soft-tissue
inflammatory change [18]; this was part of the reason that the term “fibrositis” continued to be used
for several decades. Subsequent histological studies did not show classic inflammation of muscle or
other local tissues as a characteristic of fibromyalgia [19,20]. Other studies on muscle metabolism,
when patients with equal general fitness and muscle disuse are used as controls, did not show
changes specific to fibromyalgia [20,21]. However, abnormalities in muscle physiology are observed in
fibromyalgia [22], with augmented muscle membrane propagation reactions independent of force load
or amount of muscle activity, suggesting central deregulation [23].

Pain generators within muscles, such as myofascial trigger points, have been shown to modulate
generalised tenderness in fibromyalgia [24].

4. Neuroinflammation as a Peripheral Pain Mechanism

The 1990 ACR criteria made note of cutaneous dermatographia, related to the release of
inflammatory products such as neuropeptides, glutamate, and cytokines, particularly from C-fibre
nociceptors in the skin, a process termed neuroinflammation [25]. There are subsequent interactions
with both the innate and acquired immune systems and related cells, including keratinocytes and mast
cells [26]. Neuroinflammation likely contributes to many of fibromyalgia’s clinical features, such as
arthralgia and myalgia, and may account for the increased rate of peripheral neuropathic findings in
fibromyalgia [27].

The peripheral C-nociceptors show enhanced spontaneous activity and sensitisation to mechanical
stimuli [28] and there is evidence of small nerve fibre pathology in approximately 50% of
fibromyalgia patients [27]. These peripheral changes contribute to clinical features including swelling
and dysesthesia.

This mechanism also links to other clinical phenotypes that compose the central characteristics
of fibromyalgia, such as irritable bowel syndrome, irritable bladder syndrome, migraine, restless
legs syndrome (RLS), and multiple chemical sensitivity, among others [29]. The increased activity in
C-nociceptive fibre afferents lying behind this process likely relates to central sensitization within the
spinal cord’s dorsal horn, as discussed later [26].

5. Referred Pain as a Peripheral Pain Mechanism

Building on the work of others [30,31], Smythe suggested that pain from deep spinal structures,
such as the lower neck or back, could contribute to the mechanism for the widespread pain
distribution [5,32]. These observations continued after the 1990 ACR criteria and remain relevant to a
mechanistic understanding of fibromyalgia, but require further exploration in the context of current
concepts of central sensitization.

6. Characterization of Central Sensitization in Fibromyalgia after the 1990 ACR Criteria

Exploration and understanding of the amplification of sensory inputs to the spinal cord and brain
in fibromyalgia accelerated after the 1990 ACR criteria were disseminated. This process, known as
central sensitisation, has become recognised as a key mechanism causing a wide range of symptoms
in fibromyalgia. The demonstration of a generalised decrease of pain sensitivity in fibromyalgia
patients and increased reactivity to peripheral stimulation of nociceptor nerves were important steps
to understanding fibromyalgia as a disorder driven by central mechanisms [33,34].
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Soon after the 1990 ACR criteria, an early key finding was that A-delta nociceptor stimulation
results in increased cerebral evoked responses in the somatosensory cortex [35]. Repetitive stimulation
of C-nociceptive fibres results in temporal summation in the spinal cord in normal controls and
exaggerates this process in fibromyalgia [36]. Nociceptive-evoked reflex responses in fibromyalgia
patients compared to controls showed less peripheral stimulation is required to elicit reflex muscle
changes, indicating increased neural sensitivity in the spinal cord [37,38]. These observations indicate
increased sensitivity to peripheral nociceptive sensory stimuli in fibromyalgia and reflect the process
of central sensitization [39].

The increased excitability of the spinal cord’s dorsal horn neurones is characterised by increased
spontaneous neuronal activity, large receptive fields, and augmented stimulus responses, including
those transmitted by both large and small calibre primary afferent fibres.

Allodynia, a term that describes pain induced by a non-noxious stimulus, is a key clinical feature of
fibromyalgia; this is the mechanism behind abnormal tenderness and relates to increased sensitivity in
the large mechanoreceptor fibre group. In the context of central sensitisation, peripheral A-beta fibres,
which normally function as mechanoreceptor afferents, interact with sensitised wide dynamic range
receptor neurones in the spinal cord’s dorsal horn. The altered neuroplasticity translates innocuous
peripheral sensory inputs to pain outputs and provides a link between everyday movements, activities,
postures, and other triggers that provoke fibromyalgia pain. This process also has particular relevance
to the deeply placed mechanoreceptors in and around spinal structures, such as the lower neck and
back. This mechanism would convert mechanoreceptor sensory input to a nociceptor-type function,
which results in activation of referred pain mechanisms from the spinal regions, with resultant
regionalised pain, tenderness, and other sensory complaints that are typically seen in fibromyalgia.
Further evidence to clarify this proposed mechanism is required.

Even though there is evidence that peripheral nociceptive afferent fibres (i.e., A-delta fibres and
C-nociceptor fibres) may play a role in central sensitization [24,40], it is felt that there is little indication
of a continuous nociceptive input that would be needed to cause central sensitisation in fibromyalgia.
However, the brain’s powerful modulatory effects through descending influences seem to be more
important in the fibromyalgia mechanism [41].

7. Neurotransmitters

In the context of central sensitisation in regards to fibromyalgia, there are a number of
neurotransmitters that are elevated compared to controls. These include substance P and glutamate,
both of which activate N-methyl-D-aspartate (NMDA) receptors that promote pain transmission [42–44].

Substance P, in particular, is a potent neuropeptide released from the terminals of specific sensory
nerves and binds to NK-1 receptors. It lowers the synaptic threshold in second-order spinal neurones
and, in turn, is released by the activation of NMDA receptors in the dorsal horn. Substance P can travel
extensively along the spinal cord to sensitise distant dorsal horn neurones. Substance P is also closely
associated with 5-hydroxytryptamine/serotonin (5-HT) in the brain, particularly in areas responsible
for emotion and pain perception. Substance P levels are elevated up to three times normal in the
cerebrospinal fluid (CSF) of patients with fibromyalgia [45–47].

A number of studies also showed increases in glutamate following noxious stimulation in patients
with fibromyalgia [48]. These changes are reversed by the administration of the potent NMDA
antagonist ketamine in humans [49]. In fibromyalgia, other neuropeptides such as nerve growth factor
are also elevated [50] as they are in other painful rheumatic diseases [51]. Other neurotransmitters are
also altered to varying degrees, demonstrating the complexity of the pathophysiology. These include
calcitonin gene-related peptide, brain-derived neurotrophic factors, corticotrophin-releasing hormone,
hemokinen-1, neurokinin A, neurokinin B, adrenomedullin, vasoactive intestinal peptide, neuropeptide
Y, and gastrin-releasing peptide [26].
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8. Descending Pathways in Fibromyalgia

Key brain-to-spinal cord connections originate in the emotion-linked brain regions and pass
through mid-brain structures, including the raphe nuclei (upper medulla), the periaqueductal grey,
and the locus coeruleus, and then link down to the dorsal horn through reticulospinal fibres.
These powerful signaling pathways link supraspinal structures to the activities of the spinal cord
sensory transmission neurons. Where these pathways initiate anti-nociceptive activity, the term “diffuse
noxious inhibitory control (DNIC) pathway” is used. Dysfunction of this pathway was identified as a
fundamental mechanism contributing to pain and other clinical features of fibromyalgia.

These descending pathways involve the monoamine neurotransmitters, 5-HT, and norepinephrine
(NE), which modulate the descending inhibitory “tone” that affects transmission neurones associated
with dorsal horn pain, and appears important in the facilitation of the pain sensitization process at that
level [52,53]. Where there is pain sensitisation in the dorsal horn of the spinal cord through lowered
DNIC tone, there is an inability to inhibit transmission of pain-related sensory stimuli, which are then
perceived as pain.

Descending pain inhibition is demonstrated in humans by the application of a tonic conditioning
nociceptive stimulus. Pain inhibition involving the DNIC is elicited by applying a cold pressor
test involving, for instance, submerging the patient’s arm in ice-cold water. In healthy patients,
DNIC is demonstrated by the reduction in the patient perception of the initial painful test stimulus
at another site. Over time, particularly in the 2000s, several studies showed fibromyalgia patients to
demonstrate a lower thermal pain threshold and a lower reduction in the perception of the initial test
stimulus after application of the cold pressor test. This indicates that the DNIC is not functioning
normally in fibromyalgia [53–55]. This process may also involve attenuation of normal “wind-up”
pain by C-nociceptive fibre activation in fibromyalgia. Notably, DNIC dysfunction does not occur
in depression, highlighting the presence of fundamentally different mechanisms in depression and
fibromyalgia [56,57].

The rostral anterior cingulate cortex (rACC) plays a vital role in descending modulatory pain
function. Notably, there is an attenuation of rACC function in fibromyalgia. The cerebral response to
individually calibrated pain provocation of a pain-free body region, measured by functional magnetic
resonance imaging (fMRI), shows higher sensitivity to pain provocation in fibromyalgia patients than in
controls. These studies do not show any difference in the activity of these brain regions relating to affect
or regions with sensory projections from the stimulated body area. However, fibromyalgia patients
failed to respond to pain provocation in the rACC descending pain regulatory system, indicating
dysfunction in the downward inhibitory tone from this pathway onto the dorsal horn [58].

NE and 5-HT are the key neurotransmitters of the DNIC pathway. In fibromyalgia, multiple
studies showed a reduction of both serum and cerebrospinal fluid concentrations of serotonergic and
NE metabolites [42,59,60]. Medications that target and modulate these monoamine neurotransmitters
were beneficial in reducing symptoms in some patients in clinical trials [61].

9. The Brain in Fibromyalgia

To better define fibromyalgia patients, the 1990 ACR criteria corresponded with developments in
neuroimaging; this has subsequently allowed for an enhanced understanding of the neurobiological
processes involved in fibromyalgia mechanisms [62]. Several studies showed that there are significant
differences in functional neuroimaging in fibromyalgia patients than controls. These relate to central
pain processing, differences in affective processing of pain, and modulation of the brain’s influence on
spinal cord sensory control mechanisms.

Single-photon emission computed tomography (SPECT) techniques using radiotracers infer neural
activity from localised increases in regional cerebral blood flow (rCBF). A range of abnormalities
involving rCBF occurs in fibromyalgia. These abnormalities include reduced flow in the dorsolateral
frontal cortical areas of both hemispheres, the thalamus, the head of caudate nucleus, the inferior
pontine tegmentum, the superior parietal cortex, and the gyrus rectus [63]. These studies indicated that
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a range of functional abnormalities related to pain processing occurs in fibromyalgia, and these involve
a variety of areas in the brain. SPECT studies also showed hyperperfusion of the somatosensory
cortex and related area change. In contrast, hypoperfusion of the amygdala and the anterior insula
are significant in the attention dimensions of pain response [64]. There are differences between the
findings in these structures between fibromyalgia and depression.

fMRI also demonstrates central neural activation patterns showing increased blood flow to pain
processing areas at a lower stimulation threshold in fibromyalgia than in controls [65]. Changes were
reported in intrinsic connectivity in fibromyalgia patients compared to controls. The maintenance of the
brain’s resting state displays greater connectivity to regions involved in pain processing in fibromyalgia
patients than controls [66]. These changes reduce as fibromyalgia pain decreases [67]. Connectivity
between the default mode network and pain inhibitory centres is decreased, while connectivity is
increased with the insula [68].

Magnetic resonance spectroscopy (MRS), which assesses brain metabolism by determining the
concentration of specific metabolites such as glutamate and glutamine, shows fibromyalgia patients
have significantly high levels of these compounds in the right posterior insular area compared to
controls [69]. This concentration correlates with lower pressure pain thresholds indicating a potential
link between these two observations. The alpha-2/delta subunit of voltage-gated calcium channels
in pain-related neurons is down-regulated by drugs such as gabapentin or pregabalin, resulting in
decreased excitatory release substances, including glutamate and glutamine. Medications that target
glutamatergic mechanisms, such as these alpha-2/delta ligands, may be beneficial in fibromyalgia [61].

In the last decade, understanding of glial cell activation associated with neuroinflammation
has increased. This process is inferred by the elevation of cytokine IL-8, but not IL-1β in the CSF
of fibromyalgia patients compared to controls [70,71]. IL-8 is co-localised with the translocator
protein (TSPO) in glial cells, which is the rate-limiting step in serotonin synthesis, and hence,
it modulates serotonergic synaptic transmission, and descending pain modulation. In fibromyalgia,
genetic polymorphisms of TSPO are associated with symptom severity, cerebral pain processing,
and interact with the serotonin transporter gene [71]. Brain glial activation, as seen on PET scans,
show widespread cortical activations in fibromyalgia patients compared to controls, and correlates
with fatigue [72]. MRS techniques show neuroinflammation in fibromyalgia [73].

10. Genetic Factors

Since the 1990 ACR criteria allowed better classification of fibromyalgia, further research of
affected families and twin studies showed that up to 50% may be genetic factors [74]. Genetic factors
modulate activity in relevant neurobiological systems, such as stress-response systems [75–77]. Further
understanding of the relationship of genetic factors to fibromyalgia phenotypes, such as early onset
fibromyalgia, may allow for different management strategies in different subsets [78].

11. Psychological Factors in Fibromyalgia

Several psychological factors may be relevant to the central processes causing pain in fibromyalgia
patients [57]. These factors were studied and reviewed in the decade after the 1990 ACR criteria [79].
Patients with fibromyalgia often react adversely to a psychological input that is perceived to be
stressful [80]. Some people are more prone to this abnormal stress reactivity than others. Patients with
fibromyalgia are more likely to have personalities characterised as neurotic, defined as an enduring
tendency to experience negative emotional states, using routine personality classification [81]. This type
of personality is more prone to react to stress adversely. Other relevant psychological inputs include
poor coping abilities and tendencies to calamity under stressful situations [82]. These types of processes
often overlap. The subsequent stress reaction links to the processes modulating the downward pain
control centers from the brain and mid-brain to the dorsal horn [83].

Persons with fibromyalgia tend to be more anxious, with increased chances of depression
compared to controls [84]. The lifetime rate of depression in persons with fibromyalgia may be up
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to approximately 50% to 60%, and the point prevalence is around 20% to 25%. The mechanisms of
depression include changes in similar monoamine transmitters, such as serotonin and NE, as occur in
fibromyalgia. Some medications that target fibromyalgia pain also target depression [61]. However,
other medications, such as selective serotonin reuptake inhibitors, significantly help depression but
may not modify fibromyalgia pain.

Depression does not cause fibromyalgia; hence, it is a common comorbid factor rather than a
causative factor.

12. Sleep in Fibromyalgia

Early studies by Moldofsky [85] suggested that sleep disturbance might precede the onset and
contribute to symptoms of fibromyalgia. Understanding the importance of sleep in fibromyalgia
preceded the 1990 ACR criteria, but has been clarified in decades since. For instance, sleep deprivation
was shown to impair descending pain modulation pathways important in pain control and coping
with pain [86].

13. Stress Reactivity in Fibromyalgia

The hypothalamic–pituitary–adrenal (HPA) axis links psychological and emotional factors to
neuroendocrine output. Many studies explored the role of this stress axis in a variety of chronic pain
conditions, including fibromyalgia [87,88]. Dysfunction occurs in various elements of the HPA axis,
with elevated basal levels of adrenocorticotropic hormone (ACTH) and abnormal secretion in response
to stress. Patients also have lower levels of growth hormone, insulin-like growth factor-1, thyroxin,
estrogen, and urinary cortisol [89].

It has been postulated that some changes in neuroendocrine function in fibromyalgia patients may
contribute to some symptoms contributing to a characteristic phenotype, such as fatigue. Blind studies
replacing growth hormone reported improvement in many of the characteristic symptoms, such as
tenderness, and overall well-being [90]. Many other neuropeptides, including neuropeptide Y, are also
altered in fibromyalgia patients compared to controls, but their clinical significance is unclear [91].

Evaluation of the sympathetic nervous system through measurement of heart rate variability
shows excessive sympathetic tone and sympathetic reactivity to stress [92].

14. Social Factors

A range of psychosocial factors has been linked to onset, exacerbation, or perpetuation of
fibromyalgia [57,93]. Illness burden and emotional distress are highly associated with fibromyalgia,
likely related to neurophysiological consequences of activation of the stress response [94,95]. These are
not the subject of this review.

15. Summary

Understanding of mechanisms contributing to the fibromyalgia phenotype has evolved with
considerable benefit derived from the promulgation of the 1990 ACR criteria. Mechanisms relevant to
fibromyalgia are grounded in increased knowledge of the interaction between stress-response systems
and sensory modulation, with a particular interest in pain-related neural functioning.

Since the 1990 ACR classification criteria, the criteria have evolved so that fibromyalgia features
are seen as occurring on a spectrum [9]. This development reflects the variable nature of psychosocial
inputs and neurophysiological responses linked to fibromyalgia’s clinical features.

Funding: This research received no external funding.
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